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Computational Pathology

= Patient-level outcome prediction of digitized tissue sections (whole-slide
images, WSIs), of up to 100,000 x 100,000 pixels (at 0.5um/pixel) [1]

 Multiple Instance Learning (MIL) (1) tokenizes WSI into a set of image
patches encoded using a pretrained vision encoder and (2) aggregates
patch embeddings into a slide embedding for patient-level task.

Limitations of MIL

Resulting slide embeddings are specific to the downstream task

Due to large-p (# of parameters) and small-n (# of patients), unstable
training for supervised models

Can we create a task-agnostic, unsupervised slide embedding?

Representations summarizing slide statistics

Redundant morphological information in WSI
Handful of morphological patterns repeated throughout the tissue (e.g.,
cancer cells, stroma, fat)

Prototype-based summarization of WSI
= WSI = Distribution of morphological concepts (a.k.a. prototypes)
» Summarization of WSI based on two important conditions
» Feature representation of each concept
= Cardinality (proportion) of each concept in WSI
= Huge compression
= Prototypes (C = 8~32) « patches per WSI (N ~ 10%)
= Optimal transport [3], Gaussian mixture models [4] are good candidates

— Prototype AggregatioN-based framework for compact
HEterogenous slide set Representation (PANTHER)

Prototype 1 (53%)
Squamous cell carcinoma

Prototype 2 (30%)
Loose stroma

Prototype 3 (9%)
Dense hyalinized stroma

Lung squamous
cell carcinoma
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PANTHER for Slide Representation Learning
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Generative model for patch embedding (Gaussian Mixture Model)

p(z,;0) =Y m. - N(z,; u., %)= Each component: a prototype and its distribution
= Unsupervised zyg = | &y, 1,24, ..., g, Be ¢ | € ROZ4+D = EM algorithm for param. Estimation
Per-prototype feed-forward network (linear or MLP) for downstream task

PANTHER for slide-level evaluation

Unsupervised slide embedding for downstream task
= Extensive evaluation on 4 cancer classification and 9 cancer survival datasets
= Competitive performance against other supervised MIL baselines
eBrains (30 classes) TCGA-NSCLC (2 classes) CPTAC-NSCLC (2 classes) PANDA (6 classes)
Bal. acc. Bal. acc. Bal. acc. Cohen’s Kappa
c
_g 0.7 0.90 0.92
© 0.95
O
= . 0.85 0.90
m :
g o9 0.80 I !I—oss I
(&
0.5 0.85 0.75 0.86!
ABMIL . TransMIL DSMIL DeepAttnMISL . Low-rank MIL PANTHER
TCGA-BRCA TCGA-BLCA TCGA-UCEC TCGA-KIRC
c-index c-index c-index c-index
0.75
e 0.75 0.60 0.75
c O 0.65
E +3 065 0.55 0.65
c?) g 0.55 0.50 0.55 —
L 0 _ .
0.45 0.45 0.45 0.45

PANTHER for Interpretability

Whole Slide Image Clustermap (C=16)

ROIs with Prototype Distribution
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Prototype-oriented interpretability
* Visualization of the most similar prototype on WSI (Clustermap)
= Quantification of prototype distribution per WSI
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